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Abstract 

A model originally developed for the equilibrium motion of a heavy gas cloud instantaneous- 
ly released on a uniform slope is applied for new terrain types, and the cloud shape and terminal 
velocity are predicted. This may be used as an additional test case for the evaluation of 
two-dimensional shallow water models. 
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1. Introduction 

Previously, Webber et al. [l] from SRD, UK, presented an integral model for heavy 
gas dispersion on uniform slopes. The novelty of this model (hereafter called the SRD 
model) was the shape of the model cloud which had a horizontal top surface, a front of 
a universal shape, and a rear boundary which intersected the terrain. In contrast to the 
continuous development of a similar release in flat terrain this wedge shape of the 
cloud was predicted to be steady. This was also observed to be the equilibrium state of 
a numerical shallow water model. A complete description of the problem is given in 
Webber et al. [l]. 

2. Motion in a valley with v-shaped cross section 

In this note the SRD model will be applied in a v-shaped valley. The notation is 
similar to that of the original article, except for the parameter CI which describes the 
modified topography. The new model cloud will be shaped as shown in Fig. 1. The top 
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Fig. 1. Perspective of the modified heavy gas model cloud in a v-shaped valley. 

surface is still horizontal, but the intersection with the terrain is now described by two 
lines and the shape of the front is slightly different. 

As in Webber et al. [l], the height of the terrain is written 

a(x) = TX.n^ 

but instead of the uniform slope the terrain is described by 

‘= 

( - 1, + a) for x2 > 0, 

(- 1,-a) for x2 CO, 

(1) 

(2) 

where x2 is the direction across the valley. The front velocity is 

uf = k,dm = k,Jm (3) 

where the terrain height a has been evaluated from the coordinates of the front (L, y). 
When the shape of the cloud is constant, the projection of front velocity on the x,-axis 
must be equal to the cloud advection velocity u: 

Ji-q& = k&‘w. 

This leads to 

(4) 

dE _=- 
dl91 J 

1 - 2 + alj?l 

2 - c$ 
(5) 

where 2 = L/A and y^ = y/A are the front coordinates normalized by the cloud 
dimension in the down valley direction n = u2/kf2g’T. The solution is symmetrical 
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around x2 = 0, so we only need to solve the problem for x2 > 0. The parameterization 
with w used in Webber et al. [l] is still practical. 

d2 
L~j=COS*w =z- --=-2cos~sin~@+~. 

dE dy^ 

With insertion of z - ~j in Eq. (5) we obtain 

d2 - sino 

d9=- coso . (7) 

A differential equation for the front cloud boundary is found from a combination of 
Eqs. (6) and (7). 

dy^ 2 cos*co sin 0 
do = sino + cicosw 

= 2cos* w - 2a cos2co 
tano+cr’ (8) 

Since the local front velocity uf is a continuous function in the terrain of interest, 
I postulate that the front of the equilibrium cloud must be smooth even at the center 
line, i.e. that dL/dj = 0 for 9 = 0, and according to Eq. (7) this leads to the boundary 
condition o = 0 for j = 0. With this boundary condition the solution to Eq. (8) 
becomes 

j = 0 + sinocosw - 2a 
(6c(+2a3)w+41n[sinw+acosw]-4lna 

4(1 + CC*)* 

+ asin + cos2w - 11 
4(1 + a’) J 

> (9) 

where the first two terms are identified as the original solution and the last term is zero 
for CY = 0. The shape of the front (2, j) has been plotted in Fig. 2 for different values of 
arctan CL The curve for arctan a = 0 is similar to the curve in Fig. 5 of Webber et al. 
[l]. The cloud volume is found from 

dV = fr[L - ay]*dy (10) 

Fig. 2. Top view of the equilibrium cloud in a v-shaped valley with different values of arctan a. The straight 
lines in each curve are intersections with the terrain. 
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and since the cloud is symmetrical, we just insert the solution for x2 > 0 and multiply 
by 2. The cloud volume is 

(11) 

where the normalized cloud volume 526 now depends on CC. 

52,(a) = ’ + 
2alna 

+ 
a(11 + 7a2 + 2cr4) c?(35 + 35a2 + 21a4 + 5cP)Tc 

- 16 (1 + a2)4 6(1 + ~1~)~ 16(1 + u2)4 ’ 

srr 
16 

45 
16 

” 
16 

(12) 

Normalized cloud volume 
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Fig. 3. The normalized cloud volume in a v-shaped valley Q,(a) as a function of the slope ratio CL 

Normalized terminal velocity 

Fig. 4. The normalized terminal velocity of the cloud u(cc)/u(O) in a v-shaped valley. 
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This function is shown in Fig. 3. In the limit of uniform slope a -+ 0, the function 
becomes the original normalized volume C?, = &r as presented by Webber et al. [l]. It 
is noted that the cloud velocity 

(13) 

as stated in Webber et al. [ 11, but for a fixed cloud volume this becomes a function of 
a. The ratio between the velocity in the valley and the uniform slope velocity 
(Q(0)/Q(a)P6 is shown in Fig. 4. The velocity increase with increasing cx is due to the 
higher front when the lateral spreading is limited by the valley topography. The cloud 
advection velocity u is called the ‘free-fall velocity’ in Webber et al. [l], but perhaps 
‘terminal velocity’ is a better designation since the front velocity dm implicitly 
assumes a drag force. 

3. Conclusion 

Webber et al. [l] found an equilibrium state for the motion of a heavy gas cloud on 
a uniform slope. This result may be generalized to other terrain types, e.g. a v-shaped 
valley. The existence of an equilibrium state requires a constant slope in the x1- 
direction but probably the lateral variation of the terrain height need just be symmet- 
rical and concave. In addition to the solution in the v-shaped valley a numerical 
solution for a valley with a parabolic cross section is given in the Appendix. The SRD 
model does not include entrainment or surface friction, and the comparison with 
wind-tunnel data in Webber et al. [ 11 showed that the predicted velocity became too 
fast for steep slopes. It is still not known how sensitive the shape of the cloud is to 
surface friction, entrainment or ambient wind, but an immediate advantage of the 
SRD model is that it offers a test case for numerical shallow water models when the 
entrainment is switched off. Britter [2] suggests a model for steady continuous dense 
gas flow with friction and entrainment in an inclined valley. 

4. Nomenclature 

height of the terrain 
reduced gravity 
height of the top interface of the cloud 
Froude number for the front velocity 
xl-coordinate of the front position 
= L/A 
vector describing the terrain 
cloud free-fall velocity 
front velocity 
cloud volume 
two-dimensional (xi, x2) position vector 
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qcoordinate of the front position 
= Ylff 
ratio of the terrain slope in the x2 and x1 direction 
terrain parameter for a valley with a parabolic cross section 
slope in the down-valley direction 
cloud length scale 
a convenient parameter for determination of 2, 9 
nondimensional cloud volume defined from I/ = T/13L?s 
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Appendix. Motion in a valley with a parabolic cross section 

A valley with a parabolic cross section is considered with the height of the terrain 
described by 

B a*(x) =- r x1 -;i”: ( > . 

Here, the length scale of the cloud LI has been used to formulate a problem with 
a nondimensional terrain parameter b, though in practice it is the ratio /I’ = p//i 
which will be the known parameter. Following the same procedure as for the v-shaped 
valley above, the front coordinates (L,, 9,) and the normalized cloud volume Szz are 
described by the system: 

2, = cos2 w + By*:, 

_=2cos2w-4~ y*cos2w d9, 
A 

dw tan 0 + 2fi9, ’ 

s n/2 

G(B) = 2 cos6C0 - 2p yh*cos6a dw. 

0 tano + 2/39, (A.21 

Presumably, j?, will not be a simple function of o and analytical integration of sZ,* is 
probably impossible. However, the numerical integration of j?, and Q8 is straightfor- 
ward. An example of the resulting cloud shape is shown in Fig. 5 and cloud bound- 
aries for different values of /I are shown in Fig. 6. The normalized cloud volume and 
the cloud velocity are shown in Figs. 7 and 8, respectively. When the function 52,*(/I) is 
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Fig. 5. Perspective of the model cloud in a valley with a parabolic cross section. 
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Fig. 6. Top view of cloud shapes in a parabolic valleys as a function of p. 
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Fig. 7. The normalized cloud volume f&(b) m a valley with a parabolic cross section. 
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Fig. 8. The normalized velocity of the cloud @)/u(O) m a valley with a parabolic cross section. 

known, the proper value of j3 must be found from the equation 

1’3. 
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